Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3,3'-Dibutanoyl-1,1'-(o-phenylene)dithiourea

Aamer Saeed,^a* Naeem Abbas,^a Hummera Rafique^a and Michael Bolte^b

^aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and ^bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany Correspondence e-mail: aamersaeed@yahoo.com

Received 11 December 2009; accepted 14 January 2010

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.036; wR factor = 0.095; data-to-parameter ratio = 14.7.

The molecular conformation of the title compound, $C_{16}H_{22}N_4O_2S_2$, is stabilized by two intramolecular $N-H\cdots O$ hydrogen bonds. The crystal packing shows $N-H\cdots O$ and $N-H\cdots S$ hydrogen bonds.

Related literature

For details of the biological activity of bisthioureas, see: Berkessel *et al.* (2006); Moloto *et al.* (2004). For their applications, see: Atia *et al.* (2005); Hu *et al.* (2009); Phetsuksiri *et al.* (2003). For the synthesis of the title compound, see: Succaw *et al.* (2005).

Experimental

Crystal data $C_{16}H_{22}N_4O_2S_2$ $M_r = 366.50$ Monoclinic, $P2_1/n$ a = 8.8099 (5) Å

b = 16.4925 (7) Å
c = 12.3923 (8) Å
$\beta = 91.949 \ (5)^{\circ}$
$V = 1799.53 (17) \text{ Å}^3$

Z = 4Mo $K\alpha$ radiation $\mu = 0.31 \text{ mm}^{-1}$

Data collection

Stoe IPDS II two-circle
diffractometer
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing,
1995)
$T_{\rm min} = 0.918, T_{\rm max} = 0.932$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.095$ S = 1.043360 reflections 229 parameters

 $R_{\rm int} = 0.087$

2890 reflections with $I > 2\sigma(I)$

T = 173 K

 $0.28 \times 0.28 \times 0.23 \text{ mm}$

22483 measured reflections 3360 independent reflections

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.23 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.33 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{l} N11 - H11 \cdots O1 \\ N12 - H12 \cdots O2^{i} \\ N21 - H21 \cdots O2 \\ N22 - H22 \cdots S1^{ii} \end{array}$	0.86 (2) 0.84 (2) 0.83 (2) 0.87 (2)	1.90 (2) 2.19 (2) 1.98 (2) 2.75 (2)	2.6336 (17) 3.0309 (18) 2.6616 (18) 3.6147 (14)	142.6 (17) 175.3 (19) 139.1 (18) 172.0 (17)

Symmetry codes: (i) x - 1, y, z; (ii) $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

NA gratefully acknowledges a research scholarship from the HEC Islamabad under the HEC Indigenous PhD Scholarship 5000 Scheme

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2318).

References

- Atia, A. A. (2005). Hydrometallurgy, 80, 98-106.
- Berkessel, A., Roland, K. & Neudorfl, J. M. (2006). Org. Lett. 8, 4195–4198.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Hu, C., He, Y., Chen, Z. & Huang, X. (2009). *Tetrahedron Asymmetry*, **20**, 98–106.
- Moloto, M. L. & Revaprasadu, N. (2004). J. Mater. Sci. 15, 313-316.
- Phetsuksiri, B., Jackson, M., Scherman, H., McNeil, M., Besra, G. S., Baulard, A. R., Slayden, R. A., DeBarber, A. E., Barry, C. E., Baird, M. S., Crick,
- D. C. & Brennan, P. J. (2003). J. Biol. Chem. 278, 53123-53130.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155.
- Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.
- Succaw, G. L., Weakley, T. J. R., Han, H. & Doxsee, K. M. (2005). Cryst. Growth Des. 5, 2288–2298.

supplementary materials

Acta Cryst. (2010). E66, o441 [doi:10.1107/S1600536810001789]

3,3'-Dibutanoyl-1,1'-(o-phenylene)dithiourea

A. Saeed, N. Abbas, H. Rafique and M. Bolte

Comment

Various bisthiourea derivatives have attracted much attention due to their variety of applications and bioactivities. The presence of multivalent binding sites in bis thioureas provide a multitude of bonding possibilities. Urea and thiourea functionalities, presenting opportunities for the formation of diverse hydrogen bonded networks, represent powerful crystal engineering building blocks (Succaw *et al.*, 2005). The fluorinated bis-thiourea derivative are used as organocatalyst in Morita-Baylis-Hillman reaction (Berkessel *et al.*, 2006). *N*-alkyl thiourea Cadmium(II) complex as precursor for CdS-nanoparticle synthesis (Moloto *et al.*, 2004). BINOL (1,1'-Bi-2-naphthol) bis thiourea derivatives act as chemosensors (Hu *et al.*, 2009). Bis-thiourea resins have been used for adsorption of silver(I) and gold(II) for application to retrieval of silver ions from processed photo films (Atia *et al.*, 2005). Diisoamyloxydiphenylthioureas are effective anti-tuberculosis agents (Phetsuksiri *et al.* (2003).

The molecular conformation of the title compound is stabilized by two N—H…O hydrogen bonds. The crystal packing shows N—H…O and N—H…S hydrogen bonds.

Experimental

The compound was prepared acc ording to lierature procedure (Succaw *et al.*, 2005) and Recrystallized from methanol as colourless crystals: Anal. calcd.for C₁₆H₂₂N₄O₂S2: C, 52.43; H, 6.05; N, 15.29; S, 17.50%; found: C, 52.31; H, 6.19; N, 15.41; S, 17.62.

Refinement

H atoms attached to C were geometrically positioned and refined using a riding model with C—H(aromatic) = 0.95 Å, C—H(methyl) = 0.98 Å, or C—H(methylene) = 0.99 Å, respectively. The position of the amino H atoms were freely refined. In all cases fixed individual displacement parameters

 $[U(H) = 1.2 U_{eq}(C_{aromatic}), 1.2 U_{eq}(N); 1.5 U_{eq}(C_{methyl})]$ were used.

Figures

Fig. 1. Molecular structure of title compound. Displacement ellipsoids are drawn at the 50% probability level.

3,3'-Dibutanoyl-1,1'-(o-phenylene)dithiourea

Crystal data

$C_{16}H_{22}N_4O_2S_2$
$M_r = 366.50$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
a = 8.8099 (5) Å
<i>b</i> = 16.4925 (7) Å
<i>c</i> = 12.3923 (8) Å
$\beta = 91.949 (5)^{\circ}$
$V = 1799.53 (17) \text{ Å}^3$
Z = 4

Data collection

Stoe IPDS II two-circle diffractometer	3360 independent reflections
Radiation source: fine-focus sealed tube	2890 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.087$
ω scans	$\theta_{\text{max}} = 25.6^{\circ}, \ \theta_{\text{min}} = 3.4^{\circ}$
Absorption correction: multi-scan (MULABS; Spek, 2009; Blessing, 1995)	$h = -10 \rightarrow 10$
$T_{\min} = 0.918, \ T_{\max} = 0.932$	$k = -19 \rightarrow 18$
22483 measured reflections	$l = -15 \rightarrow 14$

F(000) = 776 $D_{\rm x} = 1.353 \text{ Mg m}^{-3}$

 $\theta = 3.4-26.0^{\circ}$ $\mu = 0.31 \text{ mm}^{-1}$ T = 173 KBlock, colourless $0.28 \times 0.28 \times 0.23 \text{ mm}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 20465 reflections

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.095$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.0595P)^2 + 0.139P]$ where $P = (F_o^2 + 2F_c^2)/3$
3360 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
229 parameters	$\Delta \rho_{max} = 0.23 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.07444 (5)	0.68569 (3)	0.35994 (3)	0.02446 (14)
S2	0.47542 (5)	0.79179 (3)	0.52094 (3)	0.02947 (14)
01	0.38901 (14)	0.53284 (9)	0.57778 (9)	0.0278 (3)
02	0.83408 (13)	0.59749 (8)	0.58037 (9)	0.0224 (3)
C1	0.42857 (18)	0.65251 (9)	0.31239 (12)	0.0152 (3)
C2	0.57714 (18)	0.67920 (9)	0.33537 (12)	0.0154 (3)
C3	0.66576 (19)	0.70843 (10)	0.25383 (13)	0.0206 (3)
Н3	0.7674	0.7249	0.2695	0.025*
C4	0.6054 (2)	0.71355 (11)	0.14871 (13)	0.0228 (4)
H4	0.6654	0.7342	0.0927	0.027*
C5	0.4579 (2)	0.68847 (10)	0.12589 (12)	0.0211 (4)
Н5	0.4170	0.6924	0.0542	0.025*
C6	0.36860 (19)	0.65746 (10)	0.20698 (12)	0.0180 (3)
Н6	0.2678	0.6399	0.1906	0.022*
N11	0.34909 (15)	0.61572 (8)	0.39740 (10)	0.0160 (3)
H11	0.401 (2)	0.5867 (12)	0.4430 (16)	0.019*
C11	0.20588 (17)	0.62849 (10)	0.42462 (12)	0.0159 (3)
N12	0.16371 (16)	0.58921 (8)	0.51872 (10)	0.0168 (3)
H12	0.072 (2)	0.5945 (12)	0.5357 (15)	0.020*
C12	0.25388 (19)	0.54519 (10)	0.59085 (12)	0.0195 (3)
C13	0.1723 (2)	0.51260 (12)	0.68687 (14)	0.0272 (4)
H13A	0.1316	0.4581	0.6691	0.033*
H13B	0.0852	0.5484	0.7017	0.033*
C14	0.2751 (2)	0.50692 (12)	0.78795 (14)	0.0285 (4)
H14A	0.2206	0.4776	0.8446	0.034*
H14B	0.3663	0.4748	0.7711	0.034*
C15	0.3251 (3)	0.58888 (14)	0.83166 (17)	0.0447 (5)
H15A	0.3912	0.5812	0.8961	0.054*
H15B	0.2357	0.6205	0.8506	0.054*
H15C	0.3809	0.6179	0.7765	0.054*
N21	0.64067 (16)	0.67101 (9)	0.44277 (10)	0.0170 (3)
H21	0.708 (2)	0.6374 (13)	0.4558 (15)	0.020*
C21	0.59630 (17)	0.71486 (10)	0.52676 (12)	0.0171 (3)
N22	0.65944 (15)	0.69253 (8)	0.62711 (11)	0.0172 (3)
H22	0.630 (2)	0.7231 (13)	0.6794 (16)	0.021*
C22	0.77077 (18)	0.63670 (10)	0.65070 (12)	0.0178 (3)
C23	0.8064 (2)	0.62499 (11)	0.76915 (12)	0.0223 (4)
H23A	0.7462	0.6636	0.8114	0.027*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H23B	0.9154	0.6361	0.7847	0.027*
C24	0.7692 (2)	0.53829 (12)	0.80244 (14)	0.0308 (4)
H24A	0.6617	0.5264	0.7825	0.037*
H24B	0.8335	0.5000	0.7627	0.037*
C25	0.7954 (4)	0.52563 (15)	0.92284 (17)	0.0580 (8)
H25A	0.7694	0.4697	0.9415	0.070*
H25B	0.7314	0.5632	0.9623	0.070*
H25C	0.9024	0.5358	0.9424	0.070*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0188 (2)	0.0308 (3)	0.0237 (2)	0.00497 (16)	0.00078 (16)	0.01004 (17)
S2	0.0334 (3)	0.0301 (3)	0.0245 (2)	0.01694 (19)	-0.00509 (18)	-0.00387 (18)
O1	0.0216 (6)	0.0399 (8)	0.0223 (6)	0.0105 (5)	0.0046 (5)	0.0104 (5)
02	0.0225 (6)	0.0264 (7)	0.0184 (6)	0.0085 (5)	-0.0012 (4)	-0.0018 (5)
C1	0.0168 (7)	0.0135 (8)	0.0153 (7)	0.0021 (6)	0.0025 (6)	0.0011 (6)
C2	0.0181 (8)	0.0137 (8)	0.0144 (7)	0.0028 (6)	-0.0005 (6)	-0.0001 (6)
C3	0.0182 (8)	0.0201 (9)	0.0236 (8)	0.0003 (6)	0.0022 (6)	0.0020 (6)
C4	0.0268 (9)	0.0219 (9)	0.0200 (8)	0.0017 (7)	0.0073 (6)	0.0058 (7)
C5	0.0289 (9)	0.0213 (9)	0.0130 (7)	0.0052 (7)	0.0006 (6)	0.0007 (6)
C6	0.0191 (8)	0.0172 (8)	0.0175 (7)	0.0012 (6)	-0.0026 (6)	-0.0011 (6)
N11	0.0152 (6)	0.0189 (7)	0.0138 (6)	0.0005 (5)	-0.0007 (5)	0.0040 (5)
C11	0.0175 (8)	0.0155 (8)	0.0145 (7)	-0.0034 (6)	-0.0010 (6)	-0.0020 (6)
N12	0.0137 (7)	0.0200 (7)	0.0168 (6)	0.0006 (5)	0.0021 (5)	0.0035 (5)
C12	0.0216 (8)	0.0201 (8)	0.0169 (7)	0.0026 (6)	0.0017 (6)	0.0010 (6)
C13	0.0256 (9)	0.0324 (10)	0.0242 (8)	0.0047 (7)	0.0063 (7)	0.0108 (7)
C14	0.0391 (10)	0.0280 (10)	0.0187 (8)	0.0083 (8)	0.0043 (7)	0.0074 (7)
C15	0.0663 (16)	0.0377 (12)	0.0303 (10)	0.0012 (11)	0.0033 (10)	-0.0059 (9)
N21	0.0153 (7)	0.0195 (7)	0.0159 (6)	0.0045 (5)	-0.0027 (5)	-0.0006 (5)
C21	0.0147 (7)	0.0185 (8)	0.0180 (7)	-0.0001 (6)	0.0001 (6)	0.0006 (6)
N22	0.0190 (7)	0.0177 (7)	0.0148 (6)	0.0015 (5)	-0.0010 (5)	-0.0029 (5)
C22	0.0186 (8)	0.0168 (8)	0.0178 (7)	-0.0021 (6)	-0.0028 (6)	0.0003 (6)
C23	0.0296 (9)	0.0203 (9)	0.0167 (8)	0.0036 (7)	-0.0047 (6)	-0.0010 (6)
C24	0.0442 (11)	0.0265 (10)	0.0215 (8)	-0.0072 (8)	0.0001 (8)	0.0024 (7)
C25	0.115 (2)	0.0344 (13)	0.0240 (10)	-0.0185 (14)	-0.0110 (12)	0.0085 (9)

Geometric parameters (Å, °)

S1-C11	1.6763 (16)	C13—H13A	0.9900
S2—C21	1.6566 (16)	C13—H13B	0.9900
O1—C12	1.224 (2)	C14—C15	1.516 (3)
O2—C22	1.234 (2)	C14—H14A	0.9900
C1—C6	1.395 (2)	C14—H14B	0.9900
C1—C2	1.401 (2)	C15—H15A	0.9800
C1—N11	1.4207 (19)	C15—H15B	0.9800
C2—C3	1.385 (2)	C15—H15C	0.9800
C2—N21	1.4325 (19)	N21—C21	1.337 (2)
C3—C4	1.393 (2)	N21—H21	0.83 (2)

С3—Н3	0.9500	C21—N22	1.395 (2)
C4—C5	1.384 (3)	N22—C22	1.370 (2)
C4—H4	0.9500	N22—H22	0.87 (2)
C5—C6	1.394 (2)	C22—C23	1.503 (2)
С5—Н5	0.9500	C23—C24	1.527 (3)
С6—Н6	0.9500	C23—H23A	0.9900
N11—C11	1.334 (2)	С23—Н23В	0.9900
N11—H11	0.86 (2)	C24—C25	1.516 (3)
C11—N12	1.395 (2)	C24—H24A	0.9900
N12—C12	1.382 (2)	C24—H24B	0.9900
N12—H12	0.84 (2)	C25—H25A	0.9800
C12—C13	1.510 (2)	C25—H25B	0.9800
C13—C14	1.524 (3)	С25—Н25С	0.9800
C6—C1—C2	119.57 (14)	C15—C14—H14B	108.9
C6—C1—N11	122.61 (14)	C13—C14—H14B	108.9
C2—C1—N11	117.65 (13)	H14A—C14—H14B	107.7
C3—C2—C1	120.47 (14)	C14—C15—H15A	109.5
C3—C2—N21	119.91 (14)	C14—C15—H15B	109.5
C1 - C2 - N21	119.48 (14)	H15A—C15—H15B	109.5
C2 - C3 - C4	119.80 (15)	C14—C15—H15C	109.5
С2—С3—Н3	120.1	H15A—C15—H15C	109.5
C4—C3—H3	120.1	H15B-C15-H15C	109.5
$C_{5} - C_{4} - C_{3}$	119 94 (15)	$C_{21} = N_{21} = C_{2}$	123 85 (14)
C5-C4-H4	120.0	$C_{21} = N_{21} = H_{21}$	1160(13)
C3—C4—H4	120.0	C_{2} N21 H21	120.1(13)
C4-C5-C6	120.0	N21-C21-N22	120.1(13)
C4—C5—H5	119.6	N21-C21-S2	125.81 (12)
С6—С5—Н5	119.6	N22-C21-S2	123.01(12) 118.52(12)
C_{5} C_{5} C_{6} C_{1}	119.6	$C_{22} = N_{22} = C_{21}$	128.97(12)
C5—C6—H6	120.3	$C_{22} = N_{22} = 0.21$ $C_{22} = N_{22} = H_{22}$	120.97(11) 117.5(13)
C1—C6—H6	120.3	$C_{21} = N_{22} = H_{22}$	117.5(13)
C_{11} N_{11} C_{11}	127.91 (14)	02-022 = N22	113.1(13) 122.64(14)
C11—N11—H11	1127.91(11) 1141(12)	02 - 022 - 022	122.01(11) 122.56(15)
C1N11H11	117.1(12) 117.4(13)	N22_C22_C23	122.30(13) 114.77(14)
N11_C11_N12	117.4 (15)	$C^{22} = C^{23} = C^{24}$	114.77(14)
N11-C11-S1	114.78(14) 127.73(12)	$C_{22} = C_{23} = C_{24}$	109.6
N12_C11_S1	117 49 (11)	$C_{22} = C_{23} = H_{23} A$	109.6
112 - 011 - 011	117.49(11) 128.39(14)	C22	109.6
$C_{12} = N_{12} = C_{11}$	126.59(14)	$C_{22} = C_{23} = H_{23} B$	109.6
C12—N12—H12	115.2(13) 116.2(13)	$C_{24} = C_{23} = H_{23}B$	109.0
C11 - N12 - M12	110.5(13) 122.84(14)	123A - C23 - 123B	100.1
01 - 012 - 012	122.04(14) 122.44(15)	$C_{23} = C_{24} = C_{23}$	100.2
N12 C12 C12	122.44(13)	C_{23} C_{24} H_{24A}	109.3
N12 - C12 - C13	114.71(14) 112.57(15)	C_{25} C_{24} H_{24} H_{24}	109.3
C12 - C13 - C14	112.37 (13)	C23—C24—H24B	109.5
$C_{12} = C_{13} = H_{12A}$	109.1	$U_{23} - U_{24} - \Pi_{24} B$	109.5
C12 C12 U12D	109.1	$\Pi_{24} \Lambda_{-} U_{24} - \Pi_{24} B$	100.0
С12—С13—П13В	109.1	$C_{24} = C_{23} = \Pi_{23} A$	109.5
	107.1		109.5
піза—Сіз—пізв	107.8	п2эл—02э—п2эв	109.5

supplementary materials

C15-C14-C13	113.35 (16)	C24—C25—H25C	109.5
C15-C14-H14A	108.9	H25A—C25—H25C	109.5
C13—C14—H14A	108.9	H25B—C25—H25C	109.5
C6—C1—C2—C3	-1.7 (2)	C11—N12—C12—O1	-2.4 (3)
N11—C1—C2—C3	173.81 (15)	C11—N12—C12—C13	178.22 (16)
C6—C1—C2—N21	-177.47 (14)	O1-C12-C13-C14	31.9 (2)
N11—C1—C2—N21	-2.0 (2)	N12-C12-C13-C14	-148.67 (15)
C1—C2—C3—C4	1.9 (2)	C12-C13-C14-C15	67.2 (2)
N21—C2—C3—C4	177.67 (15)	C3—C2—N21—C21	113.70 (18)
C2—C3—C4—C5	-0.8 (3)	C1—C2—N21—C21	-70.5 (2)
C3—C4—C5—C6	-0.4 (3)	C2—N21—C21—N22	173.38 (14)
C4—C5—C6—C1	0.6 (2)	C2—N21—C21—S2	-6.7 (2)
C2—C1—C6—C5	0.4 (2)	N21—C21—N22—C22	6.5 (2)
N11—C1—C6—C5	-174.83 (15)	S2-C21-N22-C22	-173.42 (13)
C6-C1-N11-C11	-49.1 (2)	C21—N22—C22—O2	1.0 (3)
C2-C1-N11-C11	135.57 (16)	C21—N22—C22—C23	-177.18 (15)
C1-N11-C11-N12	-174.00 (14)	O2—C22—C23—C24	-61.4 (2)
C1-N11-C11-S1	5.6 (2)	N22—C22—C23—C24	116.77 (17)
N11-C11-N12-C12	6.0 (2)	C22—C23—C24—C25	-176.8 (2)
S1-C11-N12-C12	-173.65 (13)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N11—H11…O1	0.86 (2)	1.90 (2)	2.6336 (17)	142.6 (17)
N12—H12···O2 ⁱ	0.84 (2)	2.19 (2)	3.0309 (18)	175.3 (19)
N21—H21···O2	0.83 (2)	1.98 (2)	2.6616 (18)	139.1 (18)
N22—H22…S1 ⁱⁱ	0.87 (2)	2.75 (2)	3.6147 (14)	172.0 (17)

Symmetry codes: (i) x-1, y, z; (ii) x+1/2, -y+3/2, z+1/2.

Fig. 1